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Abstract—Cloud storage system poses new challenges to the community to support efficient concurrent querying tasks for various

data-intensive applications, where indices always hold important positions. In this paper, we explore a practical method to construct a

two-layer indexing scheme for multi-dimensional data in diverse server-centric cloud storage system. We first propose RT-HCN, an

indexing scheme integrating R-tree based indexing structure and HCN-based routing protocol. RT-HCN organizes storage and

compute nodes into an HCN overlay, one of the newly proposed sever-centric data center topologies. Based on the properties of

HCN, we design a specific index mapping technique to maintain layered global indices and corresponding query processing

algorithms to support efficient query tasks. Then, we expand the idea of RT-HCN onto another server-centric data center topology

DCell, discovering a potential generalized and feasible way of deploying two-layer indexing schemes on other server-centric

networks. Furthermore, we prove theoretically that RT-HCN is both space-efficient and query-efficient, by which each node actually

maintains a tolerable number of global indices while high concurrent queries can be processed within accepted overhead. We finally

conduct targeted experiments on Amazon’s EC2 platforms, comparing our design with RT-CAN, a similar indexing scheme for

traditional P2P network. The results validate the query efficiency, especially the speedup of point query of RT-HCN, depicting its

potential applicability in future data centers.

Index Terms—Distributed index, R-tree, data center network
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1 INTRODUCTION

CLOUD storage systems keep gaining attentions from
both academia and industry nowadays. From classical

systems for general data services, such as Google’s GFS [1],
Amazon’s Dynamo [2], Facebook’s Cassandra [3], to newly
designed systems with specialities, such as Haystack [4],
Megastore [5], Spanner [6], various distributed storage sys-
tems were constructed to satisfy the increasing demand of
online data-intensive applications that require massive scal-
ability, efficient manageability, reliable availability, and low
latency in the storage layer. Many works have been pro-
posed for designing new indexing scheme and data man-
agement system to support large-scale data analytical jobs
and high concurrent OLTP queries [7], [8], [9], [10].

To achieve query efficiency, most existing mature cloud
storage systems employ a pure key-value data model or
some of its variants, which are lacking in built-in support
for multi-dimensional index, as can be seen from Dynamo
and BigTable. Actually, two-layer index [7] is just an effi-
cient and suitable framework for multi-dimensional query-
ing in Cloud systems. This framework has been put into
successful practice in [8], [9], [10]. However, they construct
their global indices on the P2P networks, like BATON [11]

and CAN [12]. We know that P2P networks give better illus-
trations for connections on the logic level than the Internet
level, but their underlying topologies are actually undefined
and the nodes may scatter widely with unbounded physical
hop distance, bringing instability of performance.

As is known, more and more cloud systems today favor
an infrastructure called data center, which consists of large
number of servers interconnected by a specific Data Center
Network (DCN) [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25]. For instance, Cisco applies Fat-Tree
topology as its DCN architecture for provably efficient com-
munication [13]. Designing efficient indexing scheme on
data center topologies has been put on the agenda. Different
from P2P network, DCN is more structured with low equip-
ment cost, high network capacity, and support of incremen-
tal expansion. Particularly, DCN has specific physical
topologies, with the connections among nodes strictly
defined. It is not wise to simply transplanted the indexing
scheme for P2P networks onto DCN topologies. Such infra-
structures bring new challenges for researchers to design
efficient indexing scheme to support query processing for
various applications.

In this paper, we show the construction of a distributed
multi-dimensional indexing scheme for server-centric data
center networks. We start from one of the mainstream
server-centric topologies, named Hierarchical Irregular Com-
pound Networks (HCN) [26], [27], as an example topology.
HCN is mathematically a simple and beautiful topology
due to the inherent regularity and symmetry, which brings
in convenience for the indexing building and potential for
expansion. Correspondingly, we propose a two-layer
indexing scheme, RT-HCN. Since datasets are distributed
among different servers, we can use an R-Tree like index-
ing structure to index locally stored multi-dimensional
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data for each server. Next, RT-HCN selectively distributes
these local indices across servers as their global indices. To
avoid single master server bottleneck, each server only
maintains partial global index for its potential indexing
range. Based on the characteristics of HCN, we design an
index mapping method to promote the distribution of the
global index onto computer servers. Corresponding query
processing algorithms are also presented then. We also
prove theoretically that RT-HCN is both query-efficient
and space-efficient, by which servers will not maintain too
may redundant indices while a large number of users can
concurrently process queries with not relatively high
routing cost. Before evaluation, we discuss our work on
expanding our RT-HCN indexing scheme into another
data center topology DCell. We compare our design with
RT-CAN [8], a similar design for traditional P2P network,
in terms of performance on multi-dimensional and skewed
data. Experiments validate the query efficiency with low
false positives of our proposed scheme and depict its
potential implementation in data centers.

Our contribution of this paper is threefold:

� we are the first to propose a distributed multi-
dimensional indexing scheme for server-centric
DCN structures, and also the first to develop a gen-
eral and practical method to expand this two-layer
indexing scheme onto other data center networks;

� we present a specialized mapping technique to
improve global index distribution in the network,
bringing query-efficiency and load-balancing for the
cloud system; we besides combine practical techni-
ques to solve data skewness and querying false posi-
tives, greatly increasing the adaptability and
querying performance of RT-HCN;

� we theoretically prove the efficiency of RT-HCN, and
compare it numerically with RT-CAN [8], an index-
ing scheme for P2P network. Experiments on real
platforms show that our scheme performs excel-
lently for point query.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 introduces the over-
view of our system, including a coding method of HCN
nodes and meta-servers. In Section 4 we illustrate the proce-
dure of two-layer indexing construction with a wealth of
details, including some techniques for multi-dimension
indexing, data skewness handling, and false positives con-
trolling. Section 5 briefly depicts the query processing algo-
rithms. In Section 6 we expand the RT-HCN indexing
scheme to fit another server-centric data center networks,
DCell. Section 7 proves the efficiency of our design and per-
forms numerical experiments in comparison with the RT-
CAN [8]. Finally, Section 8 provides a conclusion and gives
some discussion about future work.

2 RELATED WORKS

2.1 Two-Layer Indexing

To get a better speed for data retrieval in these distributed
storage, usually a mechanism for parallel querying is
required. A two-level indexing framework is a good choice.
A key idea about the combination of two-level indexing
with the overlay networks was first proposed in [7]. A

general mode is offered: in the indexing framework, proc-
essing nodes are organized in a structured overlay network,
and each processing node builds its local index to speed up
data access. A global index is built by selecting and publish-
ing a portion of the local index in the overlay network, while
the global index is distributed and maintained in all nodes
over the network. Several attempts have already been car-
ried out on P2P overlay networks. RT-CAN [8] was pro-
posed as a multi-dimensional indexing scheme built on top
of local R-tree indices and organized on a CAN overlay net-
work. It helps to provide efficient data retrieval service for
large-scale shared-nothing clusters. Different from this, CG-
index [9] organizes computer nodes into a structured P2P
network, BATON, and builds B-tree indices to support high
throughput one-dimensional queries. The generalizable
work in [10] presents an extensible indexing framework to
support DBMS-like indices in the cloud based on the obser-
vation that many P2P overlays are instances of the Cayley
graph [28]. This extensible framework is able to support
multiple types of distributed indices simultaneously, such
as hash, B-tree-like and multi-dimensional index, signifi-
cantly reducing the maintenance cost and providing the
needed scalability.

2.2 Data Center Networks

What our work pursues is a scalable method of adjustment
for two-layer indexing building on DCN networks. One of
the two core components is that our underlying topology is
a specific server-centric DCN structure. Data center network
is the network infrastructure for a data center, which con-
nects a large number of servers via high-speed links and
switches. Compared to traditional cloud system which is
usually based on P2P network, specially and carefully
designed DCN topologies fulfill the requirements with low-
cost, high scalability, low configuration overhead, robust-
ness and energy-saving. DCN structures can be roughly
divided into two categories, one is switch-centric, which
means that the function of switches is enhanced to accom-
modate the need of the interconnection and routing, while
the servers require no modification. There are three kinds of
it, tree-like, flat and optical switch based. The Fat-Tree [13],
VL2 [14] and Aspen trees [15] belongs to the tree-like kind.
The other category is server-centric, which means that each
server enables the functions of interconnection and routing
while the switches require no change and only provide easy
crossbar function. Among them, DCell [16], FiConn [17],
[18], Dpillar [19], SWCube and SWKuatz [20] are designed
for mega data centers. While BCube [21], MDCube [22],
uFix [23], snowflake [24], hyper-fat-tree network (HFN) [25]
are topologies for the modular data centers. Chronologi-
cally, they usually have more advantages than the former
designs. HCN [26], [27], the topology chosen in our system
falls into the server-centric topology. It is a well-designed
network for data center and offers a high degree of regular-
ity, scalability, and symmetry. Different from traditional
P2P network, the physical connection of DCN is known, we
can guarantee the processing time by calculating out the
physical hops needed for a given query, while in P2P net-
work only logical hops of the overlay network can be esti-
mated. We have to be aware of the physical topology when
we are discussing DCN and that is why we need to improve
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the mapping technique for distributing global index to fix a
given network.

Actually, similar works on the DCN-based indexing
scheme has yielded good results. FT-Index [29] is a distrib-
uted indexing scheme based on Fat-Tree topology. In FT-
Index, the Bþ-tree and the Interval tree are adopted to orga-
nize data set locally and globally. FT-Index has a good per-
formance on false positives and space-efficiency, with the
help of two assistant tools FT-Gap and FT-Bloom. In another
work [30], the Bþ-tree is combined with Segment tree, and
the two-layer indexing is implemented on three tree-like
switch-centric DCN topologies. However, either FT-Index or
the later one performs worse for general range query than
point query. This is essentially the limit of Bþ-tree indexing
for one-dimensional data. Inspired by this, wewant to enrich
the types of querying in our new indexing scheme.

2.3 R-Tree in Distributed Environment

The other core components is a multi-dimension oriented
indexing structure: we use the R-tree. R-trees [31], [32],
developed for indexing multi-dimensional data, are the
most popular indices for spatial query processing due to
their simplicity and efficiency. The R-tree extended the B-
tree from one dimension to multi-dimensions for indexing
static features. Spatial features and their relationships were
recognized and stored in a tree structure so that features
could be more quickly retrieved by tracing along the tree
structure. R-tree’s advantages in multi-dimensional query
has additional value in the distributed systems. With the
proliferation of location-based e-commerce and mobile
computing, the need for moving objects querying begins to
arise. Assuming object movement trajectories are known as
priori, Saltenis et al. [33] proposed the Time-Parameterized
R-tree (TPR-tree) for indexing moving objects. By combin-
ing with the improved UK-means algorithm, Kao et al. [34]
uses an R-tree index to solve the problem of clustering

uncertain objects whose locations are described by probabil-
ity density functions. In [35] Zheng et al. developed efficient
algorithms to answer fuzzy objects querying, by extending
the R-tree indexing structure and deriving several highly
effective heuristic rules.

3 SYSTEM OVERVIEW

We focus on the server-centric DCN structure for the dis-
tributed indexing scheme construction, and take HCN as
the first example to illustrate our design. In this section,
some basic features of HCN topology will be introduced
and illustrated. Then, we explain some preliminary defi-
nitions for further illustration of index construction
strategy.

3.1 Hierarchical Irregular Compound Network

HCN (Hierarchical irregular Compound Network) is a
well-designed network for data center and offers a high
degree of regularity, scalability, and symmetry. A level-h
HCN with n servers in every single unit is denoted as
HCN(n; h). HCN is a recursively defined structure. A
high-level HCN(n; h) employs n low level HCN(n; h� 1)
as a unit cluster and connects all the clusters by means of
a complete graph. HCN(n; 0) is the smallest module (basic
construction unit) that consists of n dual-port servers
and an n-port mini-switch. For each server, its first port is
used to connect with the mini-switch while the second
port is employed to interconnect with another server in
different smallest modules for constituting a larger net-
work. Fig. 1 illustrates an example of HCN with n ¼ 4 and
h ¼ 2, which consists of 64 servers. Each server is labeled
according to a coding process, which will be introduced in
Section 3.2.

It is easy to see that there is always multiple routes
between any two servers in HCN and this is called multi-
path routing which provides good network features like
high bandwidth, good balancing and fault tolerance. This
is the main aspect we want to concern during index con-
struction and also becomes a main reason why special
designed index scheme for specific network is well worth
being discussed.

For clarity, we summarize the symbols with their mean-
ings in Table 1. Some of them will be described in the fol-
lowing sections.

Fig. 1. HCN(4,2) with coding for meta-server.

TABLE 1
Symbol Description

Sym Description

n Code for server and meta-server
Sn The server with code n
Mn The meta-server with code n
Rn Representatives forMn

Nn Sn’s node set for publishing
h The highest level of HCN
B Data boundary
Bn Potential index range forMn

Ri
n

The ith representative forMn

Ni
n

The ith publishing node for Sn
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3.2 Meta-Server and Coding Strategy

Given an HCN(4; h), there are 4hþ1 servers in total and are

coded by n ranging from 0 to 4hþ1 � 1. Thus we use Sn to
denote the nth server in the HCN. Since HCN itself is a

recursively defined structure, there are also 4h�l different
HCN(4; l)’s ð0 � l � hÞ in one HCN(4; h). We consider each
Sn and HCN(4; l) ð0 � l � hÞ as a meta-server in our system.

Definition 1. A Meta-server is a single server or an HCN(4; l)
ð0 � l � hÞ considered entirely.
Meta-servers together constitute the overlay network and

facilitate global queries, which is going to be explained in
detail later. Meta-servers are also coded by n and denoted
asMn. The coding strategy ofMn is given by:

Mn ¼ Sn; 0 � n < 4hþ1

HCNð4; q � 1Þ; n � 4hþ1

(
; (1)

where the HCN(4; q � 1) exactly consists of servers ranging
over Sr; Srþ1; . . . ; Srþ4q�1, with q and r from the above equa-
tion represent the quotient and the reminder when the given

n is divided by 4hþ1. From the function, we know that Mn is

equivalent to Sn when n < 4hþ1, andwhen n � 4hþ1,Mn rep-
resents a specific HCN(4; l) ð0 � l � hÞ. For example, Fig. 1
shows that in an HCN(4; 2), 64 meta-servers consist of only
one server are coded with the number ranging from 0 to 63,
16 meta-servers formed by HCN(4; 0) are coded with 64, 68,
. . ., 124 (shown as red squares), four bigger meta-servers
formed by HCN(4; 1) are coded with number 128, 144, 160,
176 (shown as blue squares), while the biggest green square
formed by thewhole HCN (4; 2) is codedwith 192.

3.3 Representatives in Meta-Server

As is already mentioned, meta-servers form a higher-level
overlay network and assist query processing in the network.
However, as the meta-server is merely an abstract concept,
we need to pick up several physical servers to be in charge
of queries that are sent to corresponding meta-server from
the overlay network.

Definition 2. Representatives of a given meta-server Mn are sev-
eral physical servers that actually deal with queries forwarded
toMn, which are picked out based on the following strategy.

1) If n < 4hþ1, we choose Sn as the representative ofMn

sinceMn ¼ Sn.
2) If n � 4hþ1, Mn, now, is actually an HCN(4; l)

ð0 � l � hÞ, and we provide a special bit manipula-
tion to find out its representatives. First we calculate
the quaternary form of n, denoted as q0q1 � � � qm. Here

m > h stands since n � 4hþ1. Second, we pick up the
first m� h bits as shown in Equation (2) and calcu-
late the decimal number b. Then we replace each of
the last b bits with q�, where q� 6¼ qm�b and will get
several newly formed number. Finally we calculate
the decimal form of the last hþ 1 bits of the new
numbers and servers coded with those numbers are
the representatives for thisMn.

m� h bits hþ 1bits
q0q1 � � � qm�h�1
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{

qm�h � � � qm�bqm�bþ1 � � � qmzfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
¼ bðdecimalÞ replace part

: (2)

For example, the grey nodes in Figs. 2a and 2b illus-
trates the representatives for corresponding meta-server
HCN(4; l) when l equals to 0 and 1. It is obvious that these
representatives actually takes the advantages of HCN
topology and offer good connectivity which will facilitate
query processing.

We denote the representatives of Mn as set Rn and Rn has
different number of entities in different situation. In case 1,

Rn ¼ fR1
ngwhile in case 2,Rn ¼ fR1

n;R
2
n;R

3
ng. HereRi

n stands
for the server which is the ith representative of meta-server

Mn, and Ri
n is called an lth-level representative if and only if

Mn is ameta-server formed by anHCN(4; l) ð0 � l � hÞ.
Now we give some explanation on choosing representa-

tives. It is obvious to choose Sn as representatives for Mn

when n < 4hþ1 because they are exactly the same. So we
focus our discussion on case 2 here. According to the topol-
ogy of HCN, it is not hard to find that all of the representa-

tives we choose for Mn (n � 4hþ1) are servers that are more
closely connected to other HCN(4; l)’s in the same level.
Thus, our strategy cut the cost of queries forwarding and
since there are three representatives for a single Mn, it also
offers flexibility to choose the closest representative or the
dullest one. This strategy also fits quite well with the multi-
path routing of HCN. What’s more, the following lemma
and theorem show that our strategy also offers good scal-
ability and balancing property.

Lemma 1. Each meta-serverMn (n � 4hþ1) has exactly three rep-
resentatives except for the highest level of meta-server with
four.

Proof. There are four different bits in quaternary number
and our strategy replace the bits with a same bit different
with qm�b in Equation (2), so the result is three. The big-
gestMðhþ1Þ�4hþ1 is the only special one that has four repre-

sentatives since the bit qm�b does not exist in this case. tu
Theorem 1. Each server Sn will be the representative for exactly

two different meta-servers.

Proof. First, it is obvious that each server should be chosen
as a representative for Mn where n < 4hþ1. Second, each

meta-server with its number� 4hþ1 picks disjoint groups
of representatives based on Equation (2), which means
each server would also be chosen as a representative for

only one meta-serverMn where n � 4hþ1. tu
From Lemma 1 and Theorem 1, we can claim that in RT-

HCN, the number of replications for every global indexing is
well controlled as three or four, bringing in good space-
efficient, and that different scales of querying tasks are evenly

Fig. 2. The Representatives for Meta-servers in HCN (4,2).
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distributed over all the HCN nodes as different levels of
representatives.

4 INDEXING CONSTRUCTION

4.1 Potential Indexing Range

Before we begin our discussion of index construction, we
illustrate another essential concept about our meta-servers.
In order to construct the global index for multi-dimensional
data in our overlay network, we have assigned each meta-
server a potential indexing range. Thus, for any given
queries, we can figure out which meta-server is responsible
for it and then the query is processed by the representatives
of that meta-server.

Definition 3. Potential indexing range is an abstract attribute
assigned to meta-server and indicates which meta-server
(indeed the subordinate representatives) is (are) responsible for
processing a given query.

The multi-dimensional data forms a data boundary
denoted as B, which is a k-dimensional rectangle as the
bounding box of the spatial data objects: B ¼ ðB0; B1;
B2; . . . ; BdÞ. Here d is the number of dimensions and each
Bi is a closed bounded interval ½li; ui� describing the extent
of the data along dimension i. Next, we focus on the two-
dimensional situation while for d � 3, we take a slightly dif-
ferent consideration in Section 4.5.

When d ¼ 2, the data is bounded by B ¼ ðB0; B1Þ, where
B0 is ½l0; u0� and B1 is ½l1; u1�. We calculate a quaternary
numberQn for each meta-serverMn and use it to help figure
out the potential indexing range Bn for Mn. Suppose
q0q1 � � � qm is the corresponding quaternary form for n, then
Qn is calculated according to the following two cases:

1) Ifm � h, we add h�m consecutive 0’s to the front of
q0q1 � � � qm and construct an hþ 1 bit quaternary
number Qn ¼ 00 � � � 0q0q1 � � � qm.

2) If m > h, q0q1 � � � qm can be split as the form
explained in Equation (2). In this situation, we pick
out the last hþ 1 bits and delete the replace part to
get Qn ¼ qm�hqm�hþ1 � � � qm�b.

Now, we use the following iteratively defined function to
calculate Bn.

Bn ¼ pirðB; QnÞ

¼

pir l0;
l0þu0

2

h i
; l1;

l1þu1
2

h i� �
; Q0

n

� �
; q0 ¼ 0

pir l0þu0
2 ; u0

h i
; l1;

l1þu1
2

h i� �
; Q0

n

� �
; q0 ¼ 1

pir l0;
l0þu0

2

h i
; l1þu1

2 ; u1

h i� �
; Q0

n

� �
; q0 ¼ 2

pir l0þu0
2 ; u0

h i
; l1þu1

2 ; u1

h i� �
; Q0

n

� �
; q0 ¼ 3

ð½l0; u0�; ½l1; u1�Þ Qn ¼ ?

:;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(3)

where Qn is a quaternary number denoted as q0q1 � � � qi and
Q0

n is a newly constructed quaternary number q1q2 � � � qi.
For example in Fig. 3, two axes B0 and B1 denote the

range of data in two dimensional space (w.l.o.g., we assume
it generates a square area, rather than a rectangle). Then the
potential indexing range for M80 (denoted as red square)

should be (½l0þu0
2 ; l0þ3u0

4 �,[l1, 3l1þu1
4 ]); the pir for M144 (denoted

as blue square) is ([l0þu0
2 ; u0], [l1;

l1þu1
2 ]), while the pir forM192

is ([l0; u0], [l1; u1]).

4.2 Cumulative Mapping

This section concerns about skewed data processing. Con-
sider a one-dimensional skewed dataset, and there are some
servers waiting to be assigned the potential indexing
ranges. If the data is sorted, we can assign each server the
range containing equally proportional data according to the
ordered sequence. In this way, the number of data fall into
the responsible range of each server is almost the same and
skewness is eliminated. However, the ideal method is not
practical in that we must collect all the data to do the sort-
ing, which is both storage and time intolerable.

That being said, Zhang et al. [36] offered a Piecewise
Mapping Function (PMF) to achieve an approximately uni-
form distribution for the skewed data. To construct the
PMF, we evenly partition the data range into some buckets.
Then the boundary coordinates of buckets are the coor-
dinates used to compute the PMF. Consider 10 numbers
f0:5; 0:9; 1:4; 2:5; 2:7; 3:2; 3:7; 5:4; 7:0; 8:9g distributed in ½0;
10�. If we divide them into five buckets with boundary
coordinates 0; 2; 4; 6; 8; and 10, the count of data in each
buckets will be 3; 4; 1; 1; 1, with a variance of 1:6. Then we
can easily get the cumulative values of the boundary coor-

dinates: 0; 3
10 ;

7
10 ;

8
10 ;

9
10 ; 1. Based on the six pairs of boundary

coordinate and cumulative value, we can build a piecewise
function with five pieces well-reasonably. Then we map all
the 10 real data distributed on ½0; 10� through this piece-
wise function to values distributed on ½0; 1�, gaining respec-
tive approximate cumulative value, as shown in Table 2.
After mapping, the same buckets gains a variance of 0, bal-
ancing the counts perfectly.

Formally, PMF is obtained as follows:

1) Take a random sample for the whole dataset to do
the later computation on a small scale and keep the
original feature of data distribution as well.

2) Equally divide the data space into N buckets, calcu-
late the cumulative values of the N þ 1 boundary

Fig. 3. Potential index range.

HONG ETAL.: EFFICIENT R-TREE BASED INDEXING SCHEME FOR SERVER-CENTRIC CLOUD STORAGE SYSTEM 1507



coordinates of these N buckets, and build N piece-
wise linear functions PMF.

3) Based on the PMF, compute the mapped value for all
real data in the sample set.

4) Treat the mapped values as a new sample set, repeat
step 2 and 3 until a satisfied variance of the counts in
each buckets has been achieved.

As for multi-dimensional data, we compute PMF’s for
different dimensions in the same way.

Cumulativemapping actually applies to both skewed and
uniform data, as the consequence of mapping is a nearly uni-
form distribution. However, since space mapping is a rela-
tively static manner, original distribution maybe essentially
changed due to data updating, the whole indexing system
will not benefit from themapping any longer. To handle this,
we can periodically check the variance of number of data in
each bucket, and we shut down to rebuild the system in the
case of its obvious fluctuation beyond some threshold.

4.3 Bloom Filter

A Bloom filter is a space-efficient probabilistic data struc-
ture, which can be used as an accelerator in point query. For
a set S with n elements fe1; e2; . . . eng, a filter use a bit array
of m bits, initially all set to 0. k independent hash functions
are used, denoted as f1; f2; . . . ; fk, each producing an integer
in ½1;m�. For each element ei, the bits at positions f1ðeiÞ;
f2ðeiÞ; . . . ; fkðeiÞ in the array of m bits are set to 1. In practi-
cal use, we need to choose the parameters m and k appro-
priately in order to minimize the inevitable false positives
and maximize the filtering ability. According to [37], we
draw several salutary lessons. For a previously defined
Bloom filter, the probability of a false positive for an ele-
ment not in the set, or the false positive rate, can be esti-

mated as f ¼ ð1� e�
kn
m Þk. On one hand, given n and m,

more hash functions provides more chances to find a 0 bit
for an element that is not a member of S, but using fewer
hash functions increases the fraction of 0 bits in the array.
The optimal number of hash functions that minimizes f as
a function of k is ln 2 � mn . On the other hand, given n and

optimal k, the length of bit array m needs to be essentially

nlog 2e � log 2
1
� for any representation scheme with a false

positive rate bounded by �. For our experiments, the param-
eter selection for Bloom filters depends largely on these the-
oretical results.

As for multi-dimension, a direct idea in [38] is to generate
a bloom filter for each dimension with the same series of
hash functions. When a multi-dimensional data is to be
checked, we only need to check its components on different

dimensions with corresponding bit arrays and get the inter-
sected results of yes or no. However, there are high proba-
bility that a misjudgment at any dimension would have
probably brought in a final false positive. This is because
the union information of the multi-dimension is not fully
used. Based on this observation, we decide to concatenate
all the multidimensional components together as a single
string. Moreover, the Murmur hash we use to generator
bloom filters is very good at processing long strings.

Specifically, bloom filter is added as an inherent property
of our local R-tree nodes. In the construction of RT-HCN,
each selected local R-tree node will create a bit array for all
the data items it covers with Murmur hash function as its
bloom filter. Then all the created filters are published along
with the nodes to be buffered remotely. They will serve for
the RT-HCNpoint query procedure. The details of index pub-
lishing and update of bloomfilters is to be explained later.

4.4 Indexing Publishing

As is introduced before, each data server Sn build an R-tree
index for its local data to facilitate multi-dimensional
search. Then, Sn adaptively selects a set of index nodes

Nn ¼ fN1
n;N

2
n; . . . ; N

dn
n g from its local R-tree and publishes

each Ni
n to the representatives of a specific meta-server

whose potential indexing range just covers the minimum

bounding range of Ni
n. Bloom filters of the corresponding

nodes is also generated and published. The choose of the
publishing nodes starts from the second level of R-tree to an
ending level in a probabilistic manner. For each level before
the ending level, we publish nodes who have no published
ancestors with a fixed probability. For the ending level, we
publish all the left nodes who have no published ancestors.
In this way, the principle of index completeness and unique
index when doing index publishing [8] are both satisfied.
Meanwhile, various sizes of R-tree nodes get a chance to be
published, which conforms to the RT-HCN’s design ideas
of “indexing hierarchical management”. We set the ending
level as antepenult level and the probability as 0.7, giving
more publishing chances for the larger nodes with the pur-
pose of checking the bloom filters of high level nodes as
soon as possible in the point query procedure and keeping
the total number of global indices at a relatively low level.
The format of the published R-tree nodes is (n;mbr), where
n indicates the origin server for storing the data and mbr is
the minimal bounding range of the published R-tree node.
After receiving the published nodes, representatives buffers
the index in memory. Algorithm 1 describes the process of
index publishing.

Algorithm 1. Index Publishing (For Sn)

1 Nn ¼getSelectedRTreeNode(Sn)
2 for eachNi

n 2 Nn do
3 Find the least n0 s.t. Bn0 fully covers Ni

n:mbr
4 Get the representatives Rn0 forMn0
5 for each Sk 2 Rn0 do
6 Sk inserts (n;N

i
n:mbr) into its global index set

Fig. 4 provides a simple example of a local R-tree. If the
node R1 is selected to be published, it should be published
to server S17; S18; S19, which are representatives of the HCN

TABLE 2
Mapping for Approximate Cumulative Value

½0; 2� ½2; 4� ½4; 6� ½6; 8� ½8; 10�
0:5
z}|{

2:5
z}|{

5:4
z}|{

7:0
z}|{

8:9
z}|{

0.9 2.7
1.4 3.2

3.7

0.075 0.21 0.44 0.64 0.85
0:135|fflffl{zfflffl} 0:31|{z} 0:54|{z} 0:77|{z} 0:945|fflffl{zfflffl}
½0; 0:2� ½0:2; 0:4� ½0:4; 0:6� ½0:6; 0:8� ½0:8; 1:0�
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(4; 0) shown in red. Similarly, if the node R3 is selected to be
published, it should be published to server S16; S26; S31,
which are representatives of the HCN(4; 1) shown in blue.

The average routing cost for one-to-one traffic in HCN is

Oð2hþ1Þ, and the cost for information transmission between

representatives of the same meta-server is oð2hþ1Þ, thus the

cost to publish an index node should be Oð2hþ1Þ on average,

and it equals toOð ffiffiffiffiffi
N

p Þwhen n ¼ 4, whereN is the total num-
ber of servers in the given HCN. For more general situation,

the cost is given byN�log 2n and can be reduced as n get larger.
We also want to mention here that the cost shown above is
exactly physical hops between servers while previous works
claims that it takes only OðlogNÞ to publish index in P2P
network but they are only discussing hops in the overlay net-
work. Since the physical connection of P2P network is unclear,
the physical hops can be hard to exam and constrain. Another
improved feature for index publishing in our system is that
under this design we can make sure that each index node is
published to exactly only three servers in the system. How-
ever, the strategy used in [8] publishes the larger index nodes
to many servers as long as the range of a auxiliary circle
centered with the publishing node’s center overlaps with the
responsible query range of them. Then, the amount of index
nodes published in the system is hard to control.

As for index maintenance, we consider the index update
triggered by local data insertion. If an insertion causes the
range of a leaf node to be expanded, we simply published
this leaf nodewith a newly generated bloomfilter to the right
place, which costs 1 or 3 or 4 HCN routing messages
(depending on the number of representatives) with informa-
tion of the newly published node and at most dozens of local
hashing. If an insertion does not cause any expansion, it
needs to update the remote bloom filter of its published
ancestor node and there must exist such one. In this case, the
updating still costs 1 or 3 or 4 HCN routing messages
(depending on the number of representatives) with informa-
tion of new bit array positions to be set to 1 and several times
of local hashing. In this way, the correctness of point and
range query can both be guaranteed. We also implement
another version of index updating when bloom filter is not
used for our experiment, which is the same with RT-CAN:

when published node is split due to local insertion, we just
delete the remote published ones and republish two new
nodes, which costs triple HCN routing messages comparing
with the former updatingmethod.

4.5 Multi-Dimension Indexing

When dimension is 3 or higher, we weaken the concept of
potential indexing range. HCN can not naturally support
the one-one mapping between topology and data space like
RT-CAN but has its own advantage that it is a recursively
defined multi-level topology. We can use the levels to pro-
cess the dimensions. An HCN(n; h) consists of n HCN

(n; h� 1), or n2 HCN(n; h� 2), etc. Similarly, a d-dimen-

sional space can be divided into d
n or d

n2
ðd� 1Þ-dimension

space, to be further processed by HCN(n; h� 1) or HCN
(n; h� 2). And so it goes on. Finally, the last two-dimen-
sional space is just what we have already discussed. To
achieve this, we need to find an appropriate way of allocat-
ing HCN levels.

In our design, an HCN(4; h) can be used to process data
of at most ðhþ 2Þ-dimension. Given the top level h and the
data dimension ðA1; A2; . . . ; ADÞ (D � hþ 2, the order here
makes no sense), we use the following principles to allocate
the total ðhþ 1ÞHCN levels for different dimensions:

1) Let l2 be the number of levels shared by dimension
A1 and A2. For d � 3, let ld be the number of levels
allocated to dimension Ad, then ld ¼ ld�1 or
ld ¼ ld�1 � 1.

2) SD
i¼2li ¼ hþ 1.

Take HCN(4; 2) for example. If the target dataset is two-
dimensional, we calculate the Meta-servers and corre-
sponding potential indexing ranges just as the previous
discussion does, which means we allocate total three HCN
levels for two-dimensional data. In the case of three-
dimension, we allocate two levels for the first two dimen-
sions, and 1 level for the third dimension according to the
above principles. Fig. 5b is the 3d viewpoint of planar
HCN(4; 2) in (a) with 4 levels of HCN(4; 1) with the ability
to partition a three-dimensional data space. To be simple,
we only highlight the 0th and 3rd HCN(4; 1) unities as dark
regions. In another word, we use four HCN(4; 1) to divide
one dimension, and use one single HCN(4; 1) to process
the other two dimensions. Above all, the previous concepts
of Meta-server, representative and potential indexing range
only make sense in the single HCN(4; 1) for two-dimension
processing. As for the node publishing of three-dimen-
sional R-tree, each node appears as a cuboid in a 3-d space
in Fig. 5b. If a selected R-tree node overlaps with some of

Fig. 4. Index distribution.

Fig. 5. Two views of HCN(4; 2).
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the four subspaces along the z-axis, we will distribute the
same copies of it into these overlapping subspaces for the
same representatives along the z-axis’s direction. Generally
speaking, with one more dimension, the number of global
indices will be quadrupled. Correspondingly, querying
process for multi-dimensional data will first determine
which smallest subsequences for 2-d processing are
involved in. This step just consists of lots of simple parti-
tions of the search space.

5 QUERY PROCESSING

RT-HCN can process kinds of queries, such as point query,
range query, and k-NN query. In this section, we explain
how different queries for two-dimensional data are exe-
cuted in RT-HCN.

The point query in RT-HCN is a two-stage processing,
similar to most other two-layer indexing schemes. First
stage happens among the Meta-servers, where a query point
Qðv0; v1Þ is first forwarded to the nearest hth level represen-
tative Snh which represents the largest Meta-server covering

Q. Snh returns qualified results through checking the bloom

filters of its buffered global indexing nodes, afterwards, it
forwards the query to the nearest h� 1th level representa-
tive Snh�1

which represents the h� 1th Meta-server cover-

ing Q and Snh�1
does the same querying and forwarding

jobs till the level of a single server. After all the qualified
results received, the query processing goes into the second
stage of remote querying on local R-trees. In all, a point
query needs to search hþ 1 servers in total, which actually
are representatives from 0th to hth levels. Our index pub-
lishing scheme does bring out some extra cost for some
queries, and we present the theoretical analysis about the
comparison of this extra routing cost with the simplest one-
to-one point query in Section 7.1.

The range query is a general version of the point query.
We regard a range Rð½a0; b0�; ½a1; b1�Þ as a large queried point
and find out the smallest HCN(4; t) that fully covers this
large queried point. Then, a point query procedure is car-
ried out until the tth level. During the query before tth level,
the query is always forwarded to the Meta-server whose
potential indexing range covers the queried range R while
from then on, the query shall be forwarded to all the Meta-
servers whose potential indexing range overlaps with R,
guaranteeing the correctness and completeness of results.

The k-nearest neighbours (k-NN) query returns the top-k
nearest results to the data Qðv0; . . . ; vd�1Þ given the query
ðQ; kÞ. Since the dataset has been mapped into an approxi-
mately evenly distributed data space, we consider the den-

sity of data in the mapped space as r ¼ K
PðUi�LiÞ, where K is

the total number of data and the denominator is the size
of the whole data space. r is thus the average number of
data in a single unit of the data space. We can use r to esti-
mate the ranges of k nearest results in such space. We will

first query the range
�h

v0 � g
ffiffi
k
r

d
q

; v0 þ g
ffiffi
k
r

d
q i

; . . . ;
h
vd�1�

g
ffiffi
k
r

d
q

; vd�1 � g
ffiffi
k
r

d
q i�

, where d is the dimension, g
ffiffi
k
r

d
q

is a uni-

form offset, and g is a scaling parameter typically equals to
0:5. If more than k results are returned, we select k nearest
ones. Otherwise, we increase the offset linearly.

6 SCHEME GENERALIZATION

Server-centric data center topologies generally are recursive
topologies (usually recursively defined multi-level struc-
tures), in which a high-level structure consists of certain
low-level structures and the structures at the same level are
connected with each other in a well-defined way. As is men-
tioned in the beginning, HCN is our first target topology
since it is relatively simple and regular. We further seek for
methods to build similar two-layer indexing schemes on
other structured server-centric data center networks. Com-
pared to developing specific indexing schemes for different
types of underlying topologies, a reusable and adaptable
method for this procedure is much more admired.

DCell is a structure that has many desirable features for
data centers. It uses servers equipped with multiple net-
work ports and mini-switches to construct its recursively
defined architecture. Any high-level DCell is constituted by
connecting certain number of the next lower level DCells.
DCell0 is the basic building block in which n servers are
connected to an n-port commodity switch. DCells at the
same level are fully connected with each other. Given t serv-
ers in a DCellk, t+1 DCellk’s are used to build a DCellkþ1.
The t servers in a DCellk connect to the other t DCellk’s,
respectively. This way, DCell achieves high scalability and
high bisection width.

The DCell topology is our first attempt for generalization
and is believed to be a good breakthrough point, derived
from some internal connection between HCN and DCell.
Fig. 6 shows the topology of DCell1 with n ¼ 4, referred as
the level-1 DCell. The DCell1 consists of five DCell0s, rang-
ing from DCell0[0] to DCell0[4]. In fact, we can get different
“pictures” of this topology from different angles. Fig. 6a is
the normal version ofDCell1, which has been the most com-
mon form well known since its birth. However, what Fig. 6b
illustrates is also the topology of DCell1. This version can be
transformed from Fig. 6a by “lifting up” one of the five
building blocks (Here we choose DCell0½0�) and doing some
rearrangement on the wiring. Such wiring rearrangement is
definitely feasible because as long as the fully connective
feature at the same level is guaranteed, the topology must
be a DCell. Hence, an HCN(4,1) appears in the transforma-
tional version ofDCell1. This inclusion relation is no by acci-
dent, which may be a specific result of the small DCell1.
Later, we will see this kind of relation also exists when the
DCell topology scales up further.

Based on this internal connection between DCell and
HCN, we can promote a similar two-layer indexing scheme,
RT-DCell, on the DCell topology just like what we have
done for HCN. The concrete method stated here basically

Fig. 6. Two forms ofDCell1 topology (with n ¼ 4).
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follows the principles of RT-HCN scheme, and also brings
new attractive features.

We take Fig. 6b as an illustration for RT-DCell. The part
of HCN-like topology in DCell1 is used for the indexing
construction, and actually it is an HCN(4,1). The nodes left
are treated as common data nodes with no indexing abili-
ties. To be brief, in practice data is distributed all over the
nodes in DCell while part of them help to build an indexing
scheme. We consider the two kinds of nodes in the follow-
ing definition.

Definition 4. Starter nodes are the nodes constituting the highest
level of an HCN-like topology as long as they can in a DCell
topology. All the nodes left are called Bencher nodes.

For starter nodes, they make up of the HCN topology. As
in Fig. 6b for n ¼ 4, aDCell1 contains anHCN(4,1). Hence the
concept ofMeta-server, representative and potential indexing
range for RT-HCNcan be used directlywithout anymodifica-
tion. Data is distributed all over the nodes in DCell, but the
global indexing nodes are published to starter nodes only.

For bencher nodes, they are not meaningless roles in RT-
DCell scheme. DCell has a characteristic that all the one-
level lower DCells are fully connected at any level. It means
the HCN-like topology consisting of starter nodes is not a
fixed one, and the set of starter nodes is not fixed, either. In
Fig. 6b, any four of the five DCell0s can make up of an HCN
(4,1). In other words, if some DCell0 unit used to build the
HCN(4,1) does not work well due to machine fault or net-
work congestion, it can be replaced by the bencher DCell0,
keeping the whole HCN indexing scheme complete and
unaffected. We can change the HCN topology correctly and
naturally by letting the indexing publishing procedure to
produce replicated global indexing nodes and store redun-
dant ones on bencher nodes. This behaviour is just like the
bench players substitute the starters, and this cycle is
sustainable.

To better understand the roles of bencher nodes in RT-
DCell, we let theDCell1 expands a step further.

Fig. 7 shows a DCell2 topology with n ¼ 4. It consists of
21 DCell1 numbered from 0 to 20, each of which appears as
a rectangular pyramid like the DCell1½20� at the top right

corner. These DCell1s should be fully connected with part
of the links represented. A node in Fig. 7 actually represents
a DCell0 unit. Based on Definition 4, starter nodes are dis-
tributed in DCell1½0� to DCell1½15� limited in the yellow
range, forming a highest level of HCN(4,3). In general,
green range indicates an HCN(4,2), blue range indicates an
HCN(4,1), and red range indicates an HCN(4,0). All left
nodes from DCell1½16� to DCell1½20� are bencher nodes.
Interestingly, these bencher nodes can be elegantly divided
to form an HCN(4,2) and an HCN(4,1).

The two-layer indexing scheme normally runs on the
HCN(4,3) topology, consisting of starter nodes. However,
the bencher nodes offers rich alternatives for substitution.
No matter what size of a sub-HCN topology in the HCN
(4,3) encounters problems, bencher nodes can greatly
smooth the bad effects by providing an HCN(4,1) for
small scale faults and an HCN(4,2) for larger ones. This
back up function from bencher nodes seems to be a cus-
tomized service for the RT-HCN indexing architecture in
RT-DCell. The faulty problem mentioned here is rather
vital and makes sense in today’s data centers, and need
to be treated carefully in the theoretical design if possible.
RT-DCell is the first generalization from RT-HCN scheme
on other server-centric data center topologies, and we
believe it is a highly fault-tolerant and robust indexing
architecture.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of RT-HCN
theoretically and experimentally.

7.1 Theoretical Analysis for Extra Routing Cost

We propose a comparison of the routing cost between RT-
HCN indexing routing strategy and the shortest routing
strategy here. The shortest routing strategy is the most
common routing strategy for ordinary distributed indexing
mechanisms. It acts as a reference in the following analysis,
reflecting the relative performance of the RT-HCN index-
ing routing strategy. We take the point query process for
illustration.

The RT-HCN indexing routing strategy for point query
can be described as four steps. First, a query comes at a ran-
dom starting node S in HCN(n; h), and S forwards the
query to the nearest hth level representative Snh which is

responsible for it. Second, Snh forwards the query to the

nearest h� 1th level representative Snh�1
, and this step

recursively continues until the 0th level representative is
reached. Third, each time a representative is reached, it
returns back eligible indexing nodes to the starting node S.
Fourth, S search for the final result with the received index-
ing nodes.

However, if we use the shortest routing strategy for point
query, one vital precondition is that every node has buff-
ered all the local indices of all the other nodes. As long as a
query comes at a starting node S, it knows which node the
final result is located at, with no need of any extra routing.
Next, we make the extra routing cost more formalized to get
a better understanding.

Following are the computation procedures of three varia-
bles defined for the two routing strategies.

Fig. 7.DCell2 topology (with n ¼ 4).
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1) Lh: the average distance between any starter node S
and the nearest hth level representative Snh in HCN

(n; h). According to whether the starter node falls into
the same sub-HCN with the hth level representative,
Lh has two probable values. It equals to Lh�1 with the

probability of 1
n, and equals to Lh�1 þ 2h�1 with the

probability of n�1
n .L0 is 0. Thus,

Lh ¼ n� 1

n
ðLh�1 þ 2h�1Þ þ 1

n
Lh�1

¼ Lh�1 þ n� 1

n
2h�1 ¼ n� 1

n
ð2h � 1Þ:

2) Rh: the average distance of the routing path which
starts from the hth level representative Snh , and ends

up at the 0th level representative Sn0 . Similarly, for

any two representatives of two adjacent levels, Sni

and Sni�1
, the average distance has two probable val-

ues according to whether they falls into the same sub
HCN. Rh is their summation. Thus,

Rh ¼
Xh
i¼1

½1
n
ð2k � 1Þ þ n� 1

n
2k� þ 1

¼ 2hþ1 � nþ h

n
:

3) Ah: the average distance between any pair of nodes
in HCN(n; h). Similarly, according to whether the
two nodes fall into the same sub HCN, Ah has two
probable values. In HCN(n; h), the probability of any
two nodes falling into the same HCN(n; h� 1) is
n
1ð Þ nh

2

� �
nhþ1

2

� � , while the probability is
n
2ð Þ nh

1

� �
nh

1

� �
nhþ1

2

� � for the con-

trary. A0 is 1. Thus,

Ah ¼
n
1

� �
nh

2

� �
nhþ1

2

� � Ah�1 þ
n
2

� �
nh

1

� �
nh

1

� �
nhþ1

2

� � ð2Lh þ 1Þ

¼ nh � 1

nhþ1 � 1
Ah�1 þ ðn� 1Þnh

nhþ1 � 1
ð2Lh þ 1Þ

¼ 2n� 2

2n� 1

ð2nÞhþ1 � 2ð2nÞh þ 1

nhþ1 � 1
�

nhþ1 � 2nh þ 1

nhþ1 � 1
:

The Lh here has been defined above.
In fact, Ah stands for the routing cost of the shortest rout-

ing strategy, while Lh and Rh stands for the first two steps
of the RT-HCN indexing routing strategy, which brings in
the major extra routing cost. Consider that HCN(n; h) usu-
ally has a small value for h, we take limits of the three varia-
bles by tending n to1.

1) n!1lim Lh ¼ n!1lim n�1
n ð2h � 1Þ ¼ 2h � 1.

2) n!1lim Rh ¼ n!1lim ð2hþ1 � nþh
n Þ ¼ 2hþ1 � 1.

3) n!1lim Ah ¼ n!1lim ð2n�2
2n�1

ð2nÞhþ1�2ð2nÞhþ1

nhþ1�1
� nhþ1�2nhþ1

nhþ1�1
Þ

¼ 2hþ1 � 1.
The relative major extra routing cost can be represented

as LhþRh
Ah

¼ 1þ 2h�1
2hþ1�1

< 3
2. Regarding the vital precondition

that the RT-HCN indexing routing strategy stores far less

global indexing items than the shortest routing, we can
draw a conclusion that this two-layer indexing scheme has
perfect space efficiency while it may suffer a little burden
for extra routing, which is quite reasonable.

7.2 Numerical Experiments

To testify the proposed indexing scheme, we evaluate RT-
HCN on Amazon’s EC2 platform. We implement our index-
ing system in Python 2.7.9, with bloom filters implemented
in C++. The instance each has a 3.3 GHz Turbo Intel Xeon
processor, 4 GB memory and 8 GB EBS storage. The network
links are 100 Mbps. Experimental network scale ranges from
4, 16 and 64, corresponding to the total number of servers
supported by HCN(4; 0), HCN(4; 1), and HCN(4; 2). The
experiments involves four synthetic datasets and one real
dataset, classified into two groups. One group follows uni-
form distribution, named as Uniform 2d, Uniform 3d, and
Uniform 4d, generated for 2 to 4 dimensions. The other
group follows skewed distribution, named as Zipfian 2d
and Hypsogr. Zipfian 2d is a two-dimensional dataset,
strictly follows zipfian distribution with skewness factor 0.8
in each dimension. Hypsogr is a real dataset obtained from
the R-tree Portal, containing 76,999 two-dimensional MBRs.
For each dataset, we generate 200000N data points, where N
is the number of instances. Particularly, for Hyposogr, three
steps are taken to generate 200000 N data items. We first
extract from the original MBRs for distinct two-dimensional
points. Then we do several minor offsets for each point as
new data. Finally, we randomly rearrange the data sequence.
Synthetic datasets are all distributed in the range [0, 2.5]. In
each experiment concerning one dataset, we initially divide
and distribute the whole dataset randomly over the instan-
ces, making all of them maintain roughly the same number
of data items. Table 3 is the parameters used in our experi-
ments, where default values are in bold.

Experiments are conducted in the following ways. For
each network scale and specific dataset, we execute point
query, range query, k-NN query, and update-point-mix
query. We interact with the running HCN topology with
another EC2 instance called client in a centralized manner,
mainly in charge of query tasks distribution and informa-
tion gathering. For each experiment, client instance continu-
ously distribute the query tasks randomly over the HCN
clusters. Query time (seconds consumed per 1,000 queries
or 500 queries) is used as our performance metric. We exe-
cute 10,000 query tasks per kind of query, and record the
processing time every 1,000 queries. Each test is repeated 10
times and the average results are used.

TABLE 3
Experiment Settings

Parameter Values

Cardinality 800,000, 3,200,000, 1,280,000
Dimensionality 2, 3, 4
Distribution Uniform, Zipfian, Real
Uniform Datasets Uniform 2d, Uniform 3d, Uniform 4d
Skewed Datasets Zipfian 2d,Hypsogr
Selectivity 0:01%, 0:1%
HCN Level 0, 1, 2
Participants RT-HCN, RT-CAN
M of Local R-tree 10
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7.2.1 Query Performance

We test the performance of three query types on Uni-
form 2d and Hypsogr datasets.

Forpointquery, thequery sets aregenerated througha ran-
dom extraction from the target dataset. Considering that the
dense portion of a dataset is more likely to be queried, this
method of query generation is natural. For RT-HCN, point
query is not a special type of range query due to the bloomfil-
ters. Thefilters carrymore reliable information about the exis-
tence of a point, saving much time wasted in the remote
verification. Fig. 8 shows the performance of point query in
different network scales. Processing time per 1,000 queries is
the metric. Regarded collectively, point query gets accelera-
tion to some extent as network scales up. This is because the
bloom filters play great roles in the parallel processing. Con-
sidering thedata features and indexingpublishing rules, each
representative will buffer lots of global indices with many
interval overlaps. Given a querying point in a uniformly dis-
tributeddataset,we have reasons to believe that almost all the
serversmaystoreproximalpoints in theworst case, leading to
the verification work spread all over the network. Theoreti-
cally, this method cannot make full use of the parallelism of
the scalingnetwork.Whatbloomfilters contribute is the sharp
cutoff of the candidate locations to be verified. For Uni-
form 2d, as the network scales from 4 to 16 and 16 to 64, RT-
HCN obtains a speedup of 2.15 and 1.64, respectively. As for
Hypsogr, theperformance trendofpoint query is similarwith
the uniform dataset but a little higher in value. This has two
reasons. One is the cumulative mapping helps to handle
skeweddatasets just as theuniformdistribution.Another rea-
son is that each point in the real dataset occupies more bytes,
whichmayaffect theefficiencyofhashing inbloomfilters.

For range query, the query sets are generated through dif-
ferent selectivities, which are defined as the percentage of
searched space. Fig. 9 shows the performance of range query
in different network scales. The metric is processing time per
500 queries. For Uniform 2d and 0:01 percent selectivity,
when network scales 16 times up, we observe a total speedup

of 1.39 times. A similar performance appears in hypsogr.
However, when selectivity increases up to tenfold, the
speedup almost disappears. Actually, the first step of RT-
HCN querying algorithm concerning four top-level repre-
sentatives do not benefit from the network scaling up. When
range query involves small searched space, at least not all the
servers are to be involved, and the parallelism can make
some contribution. But as the selectivity increases, the worst
case of searching spread all over the network will frequently
occur in range query, which makes the overall performance
largely depend on the first stage of candidate global index
searching, leaving the four starting nodes as bottlenecks. As
for RT-CANwith a similar indexing structure, it has different
behaviors for range query, whichwill be shown later.

For k-NN query, query sets are basically the same as
point query, with extra parameter k. As stated before, we
use an efficient estimation of initial queried range through
the density of data in the mapped space. Processing time
per 1,000 queries is used. In Fig. 10 , we show the perfor-
mance in different network scales when k ¼ 8. For uniform
dataset, performance improves slowly like the range query
but the values are better. This is because the k-NN search
range is much smaller. Real dataset has a similar perfor-
mance as the estimation of initial queried range also applies
for skewed data due to the work of cumulative mapping.
Fig. 11 shows the performance of various values of k from 2
to 8 for the two datasets. Network scale is set to 64. The
query time increases when parameter k increases, as the
search space increases with k.

7.2.2 Update Performance

For index update experiment, we generate a mixed load of
point queries and point insertions. To be specific, our client
instance distribute the same querying tasks as in the point
query test and generates a random local R-tree point inser-
tion every five queries. To have a better view of update per-
formance, we also do a comparative experiment with no
bloom filters. Processing time per 1,000 queries is used.

Fig. 8. Performance of point query.

Fig. 9. Performance of range query.

Fig. 10. Performance of k–NN query ðk ¼ 8Þ.

Fig. 11. Performance of k–NN query (64 node).
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Results are shown in Fig. 12, where pure load is just the
point query tasks. From the perspective of pure load, we see
clearly how fast bloom filters are. In network scale of 4,
point query performance of RT-HCN with bloom filters is
3.21 times the no-bloom-filter version. With the network
growing up, RT-HCN with bloom filters continuously bene-
fits from the parallelism and keeps gaining speedup, while
the performance of no-bloom-filter RT-HCN grows slowly
owing to the similar reasons as range query. As for the
mixed load containing 20 percent data insertions, there are
two kinds of performance. For RT-HCN without bloom fil-
ters, updating brings better performance, while for RT-
HCN with bloom filters, they are very close. When filter is
not used, the global updating is node-oriented, concerning
the deletion and republishing of related global nodes
through at most four routing messages, faster than the point
query. When filter is used, the global updating is bit-array-
oriented, concerning the new positions to be set to 1 of
related published bloom filters through at most four routing
messages. However, the update of published bloom filters
still needs a linear scan as query. In all, RT-HCN can handle
both queries and updates efficiently.

7.2.3 Multi-Dimensional Performance

We also conduct a simple experiment to verify the index-
ing ability for other dimensions. Based on the designing
principles for dimension greater than 2, the HCN levels
are allocated for extra dimensions. Thus, network scale of
4 only supports Uniform 2d. As the the network scales up
for one level, a new dataset with one more dimension is
supported. We present the results of point query for three
uniform datasets in Fig. 13. Processing time per 1,000
queries is the metric. Undoubtedly, two-dimension has the
best performance, since RT-HCN works in two different
styles for two-dimension and other dimensions. When
doing queries for dimensions greater than 2, lots of parti-
tion work needs to be done before locating a region for fur-
ther two-dimensional processing.

7.2.4 Comparison with RT-CAN

RT-CAN is a well known two-layer indexing schemes on
P2P networks, sharing similar designing philosophy with
RT-HCN. It is the most relevant work we have learned
about so far that can be experimentally implemented to
compare with for our scheme. Hence we actually make RT-
CAN run on the same batch of EC2 instances as RT-HCN,
treating them to be logically connected like the P2P topol-
ogy. We implement the main querying functions for RT-
CAN in python, except for the index tuning mechanism,
because we do not involve dynamic updating behaviors but
static point and range querying tasks in this experiment.
Three other notes need to be declared here. First, our local
R-tree has at least 5 or 6 levels with branch limitation M set
to 10, which is different from 3 levels in the RT-CAN paper.
Second, the parameter Rmax is set as the half of the side
length of each CAN node zone, since the selection of Rmax

in RT-CAN paper has no common sense for different sizes
of local R-tree. Third, we published the antepenult level
nodes of local R-tree as global index, rather than the last but
one level. We compare RT-HCN and RT-CAN on Uni-
form 2d and Zipfian 2d for different network scales. Point
and range query are both tested. Processing time per 1,000
queries is used for point query while for range query, the
metric is per 500 queries.

Figs. 14 and 15 show their performances of point and
range query for Uniform 2d, respectively. In Fig. 14, we
find that RT-CAN does not act very well, even slower than
the RT-HCN without bloom filters. However, we do not
regard this as the real performance of RT-CAN. Having
checked out the number of global indices maintained on
each server, we discover that each RT-CAN server buffers
global indices 10 times more than RT-HCN server on aver-
age, which slow down the first stage of two-layer indexing.
The situation may result from our selections of indexing
publishing levels and Rmax. We try different settings and
never get a remarkable improvement. From another point
of view, as the network grows up, the speedup of RT-CAN

Fig. 12. Performance of update.

Fig. 13. Multi-dimension.

Fig. 14. Comparison of point query (uniform dataset).

Fig. 15. Comparison of range query (uniform dataset).
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is better than RT-HCN, because RT-CAN has no bottleneck
when doing global indexing search like the four top-level
representatives in RT-HCN. But the number of global index
buffered in RT-CAN servers is really hard to control due to
its arbitrary redundancy of published nodes and often stays
at a high value, its absolute query performance is limited.
As for range query in Fig. 15, a similar pattern appears.
Fig. 16 shows the point query performance for Zipfian 2d.
For RT-HCN, cumulative mapping has made the zipfian
distribution equivalent to the uniform distribution, thus RT-
HCN has almost the same querying performance as Fig. 14.
For RT-CAN, it does not offers any preprocessing mecha-
nisms for data skewness. It is just passively adapted to han-
dle skewness, thus suffering a performance degradation.

In short, RT-CAN indeed perform better than RT-HCN
in regard of performance speedup as the network scale
increases. However, the absolute performance depends
largely on the selections of index publishing levels and
Rmax which decide the total number of published global
indexing nodes. Moreover, RT-CAN is bad at processing
skewed data. For RT-HCN, we equip it with bloom filters to
bypass the top-level bottleneck and regain speedup for
point query, achieving tremendous performance improve-
ment. With the help of representative mechanisms and spe-
cific selection of publishing levels, the number of published
global indices is controlled at a relatively low level, which
also point out another significant fact: considering the enor-
mous redundancy of published nodes, bloom filters are not
appropriate for RT-CAN. Last but not least, RT-HCN use
cumulative mapping to efficiently process data skewness.

8 CONCLUSION

In this paper, we propose an indexing scheme named RT-
HCN for multi-dimensional query processing in data cen-
ters, which are the infrastructures for building cloud storage
systems and are interconnected using a specific data center
network. RT-HCN is a two-layer indexing scheme, which
integrates HCN-based routing protocol [27] and the R-Tree
based indexing technology, and is partially distributed on
each server. Based on the characteristics of HCN, we pres-
ent a specialized mapping technique to improve global
index allocation in the network, resulting query-efficiency
and load-balancing for the cloud system. We also combine
practical techniques in face of data skewness and querying
false positives, greatly increasing the adaptability and que-
rying performance of RT-HCN. We prove theoretically that
RT-HCN is both query-efficient and space-efficient, by
which each server will only maintain a constrained number
of indices while a large number of users can concurrently

process queries with low routing cost. We also give an
insight into the inner relation between the HCN and other
data center topologies, and apply the two-layer indexing
scheme to the DCell topology in a generalized way. We
compare our design with RT-CAN [8], a similar design for
traditional P2P network. Experiments validate the efficiency
of our proposed scheme and depict its potential implemen-
tation in data centers.
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